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Abstract. Localization of an electron moving in two dimensions, submitted to a strong magnetic field and
scattered by randomly distributed zero-range impurities is investigated. Considering the explicit expression
for the density of states obtained by Brézin, Gross and Itzykson, the Lifshitz argument is adapted in order
to analyze the unusual power-law behavior of the low energy spectrum. When the impurity density is
smaller than the Landau degeneracy, typical configurations of disorder responsible for low energy states
are identified as cluster of impurities of well defined form. This allows for an interpretation of low-lying
states, localized around these clusters, whose size diverges logarithmically as the energy goes to zero.

PACS. 73.40.Hm Quantum Hall effect (integer and fractional) – 72.15.Rn Localization effects (Anderson
or weak localization) – 05.30.-d Quantum statistical mechanics

1 Introduction

The problem of an electron submitted to a strong mag-
netic field and moving on the plane in a random potential,
has been subject of intensive investigations, due to its rel-
evance for the integer quantum Hall effect. In the case of
a locally correlated disordered potential, explicit results
have been found regarding the average density of states
(DOS) [1–3]. Although the DOS does not contain in gen-
eral any information about localization, exception should
be made for the tails of the spectrum, which are generally
associated with improbable realizations of the random po-
tential. And as for the Lifshitz-tail examples, these tails
are interpreted in terms of localized states. In the strong
magnetic field problem, such a situation is encountered
for the case of Gaussian fluctuations (the spectrum dis-
plays a Gaussian tail at large energy [1]). Things change,
if disorder is realized by delta impurities obeying Poisson
statistics (or magnetic impurities as well, when projecting
on the lowest Landau level (LLL) [4]). The spectrum is
then bounded from below, and instead of having a tail, it
becomes singular at low energy. More precisely, depending
on a parameter f = ρ/ρl which is the ratio between the
density of impurities (ρ) and the Landau degeneracy (ρl),
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the DOS takes the following asymptotic form [2],

λρ(E) ∼ω→+0



(1− f)δ(ω) +A(f)ω−f , (0 < f < 1)
1/ω(ln[ω/α])2, (f = 1)
B(f)ωf−2, (1 < f < 2)
const., (f = 2)
C(f)ωf−2, (f > 2) (1)

with ω = f(E − ωc)/λρ (λ measures the strength of the
delta potential). This behavior is very uncommon, and
seems to be particular to the choice of short-range sin-
gle impurity potential; for long range ones, the usual Lif-
shitz tail is recovered [5]. In the standard Lifshitz argu-
ment with no magnetic field, low energy states are local-
ized in regions of space where impurities are absent. An
empty region, of typical size πR2, contains states with en-
ergy of the order of 1/(πR2). For a Poisson distribution,
the probability of not finding a single impurity in a vol-
ume πR2 is exp(−ρπR2). Identifying the energy to the in-
verse size of the empty region let to obtain the low energy
behavior exp(− ρ

E ). This heuristic argument [6] has been
later confirmed and extended by field-theoretic approach
[7–10]. The question is whether it is possible to adapt this
argument for the problem with strong magnetic field, in
order to have a physical interpretation of the base of the
spectrum, known to be constituted of localized states [11].

Let us consider the case where the density of im-
purities is less than the Landau degeneracy (f < 1).
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The zero energy delta peak has a simple interpretation
[12] and corresponds to the delocalized states which are
expected at the center of each Landau band [13,14]: states
are indeed linear combinations of Landau states, which
vanish at the position of the impurities. In a given vol-
ume V , the number of available Landau states is ρlV .
The number of constraints imposed on the zero energy
states is ρV , the number of impurities. As a consequence,
the corresponding subspace of states has the dimension
(ρl − ρ)V (unless, as will be seen later, two impurities co-
incide). This gives as expected the degeneracy ρl(1−f) per
unit volume, given by (1). What remains to be analyzed
is the ω−f behavior of the excited states spectrum.

The paper is organized as follows, in Section 1, the
problem with a finite number N of impurities is analyzed
in details. The zero modes are first extracted from the
Hilbert space. This allows to define the restriction of the
Hamiltonian to the excited subspace as a N ×N matrix.
The two impurities case is explicitly solved: it exhibits the
mechanism which produces low energy states. The gener-
alization to a cluster of impurities is then considered and
an estimation of the lowest energy is found. In Section 2,
a statistical analysis is performed, using the latter estima-
tion. The most probable configurations corresponding to
a given low energy is found, and the contribution to the
DOS is computed in the case f < 1.

2 The N delta impurities problem

2.1 Coherent states basis for the excited subspace

The N impurities problem, projected onto the LLL is de-
fined by the Hamiltonian

H = λP0

N∑
i=1

δ(r− ri) P0 (2)

after shifting the spectrum by a constant. λ is the coupling
constant of the delta potential, P0 is the projection opera-
tor on the LLL. The basis corresponding to the symmetric
gauge, centered at position a (using complex notation and
magnetic units) writes:

φap(r) =
1√
πp!

(z − a)p exp
[
−1

2
(zz̄ + aā− 2zā)

]
p ∈ N .

(3)

When there is only one impurity located at position a,
these states remain eigenstates, with zero energy for p > 0
and with energy λ/π for p = 0. We associate the coherent
state ψi to the impurity i, where ψi corresponds to the
only non-vanishing state at ri:

ψi(r) = φzi0 (r) =
1√
π

exp
[
−1

2
(zz̄ + ziz̄i − 2zz̄i)

]
. (4)

As already mentioned, the LLL is divided into two or-
thogonal subspaces: the zero energy subspace of dimen-
sion higher or equal to ρlV −N , and the excited subspace

of dimension less or equal to N . The subspace of wave-
functions vanishing at ri, is orthogonal to ψi and contains
the zero energy states. Therefore the zero-energy subspace
is orthogonal to the one generated by ψ1, . . . ψN . We now
find under which conditions theses states are linearly in-
dependents.
Given

ψ(r) =
N∑
i=1

aiψi(r) (5)

a linear combination of these N states. In the Landau
symmetric basis ψ writes:

ψ(r) =
∞∑
p=0

bpφ
0
p(r) . (6)

The relation between the bp and ai is then

bp =
1
√
p!

N∑
i=1

aiz̄
p
i e−

1
2 ziz̄i . (7)

In order for ψ to be identically zero, the bp have to vanish.
Imposing this condition to the first N (p = 0 . . .N − 1)
leads to an homogeneous system of equations for the an,
with a determinant proportional to the z̄i’s Vandermonde
determinant, i.e. a completely antisymmetric function of
these variables. Therefore a necessary condition for the ψi
to be linearly dependent is that two impurities coincide,
and it is evidently sufficient. As a consequence ψ1, . . . ψN
is a basis of the excited subspace (non-orthogonal).
We rewrite the Hamiltonian into this basis. Starting from
the decomposition (5) of an arbitrary excited state, the
action of H on this state is

〈r|H|ψ〉 = λ
N∑
i=1

P0(r, ri)
N∑
n=1

anψn(ri) (8)

with

P0(r, r′) =
1
π

e−
1
2 (zz̄+z′z̄′−2zz̄′) (9)

the kernel of the LLL projection operator. Using the fact
that

〈ψi|ψj〉 = πP0(ri, rj) =
√
πψj(ri) (10)

we obtain

〈r|H|ψ〉 = λ
N∑
i=1

N∑
j=1

ajP0(ri, rj)ψi(r) . (11)

To conclude, the matrix elements of H expressed in the
(ψ1, . . . , ψN ) basis are given by λP0(ri, rj). The result is
identical to the operator proposed in [15] for analyzing
this problem.
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2.2 Two impurities

With only two impurities, the matrix can be diagonalized.
Choosing the spatial reference frame such that z1 = −z2 =
a/2, where a is the distance between the two impurities,
we have

H2 =
λ

π

(
1 e−

1
2a

2

e−
1
2a

2
1

)
· (12)

The eigenvalues of this matrix correspond to the energies
E− and E+ of the two excited states,

E± =
λ

π
(1± e−

1
2a

2
) , (13)

and the corresponding wave-functions is (up to a normal-
ization coefficient)

ψ± = ψ1 ± ψ2 =
1√
π

e−
1
2 (zz̄+a2)(e2az ± e−2az) . (14)

In this light, the excited states have almost the same en-
ergy, comparable to the one impurity value, when the two
impurities are well separated; whereas, a low energy state
is obtained when the two impurities are close. For a � 1
this energy behave like

E− '
λ

2π
a2 . (15)

2.3 Impurity cluster

The previous example suggests that low-energy states are
associated with regions of high concentrations of impu-
rities. Indeed, N impurities involve N localized states
ψi (which have a characteristic size 1/ρl). And low-lying
states are expected to appear when the overlap between
these states starts to be important. For instance, when N
impurities are confined in a small volume (πR2), forming
in this way a cluster, the N corresponding states overlap
essentially with the Nl = ρlπR

2 Landau states situated
inside the disc (in the symmetric gauge, the states of the
LLL are localized on a ring of radius

√
l/ρlπ, where l is

the angular momentum [17]). So if N > Nl, we expect
to have N − Nl low-energy states. It seems then natural
to consider such configurations to analyze the lower spec-
trum.

First, we estimate the lowest energy of such configura-
tion, using the decompositions (5) and (6) of an excited
state. A low energy state is supposed to avoid the impu-
rities. We construct such a state by imposing the bp to
vanish until p = N−2 (included). ψ has then components
only on the Landau states p > N − 2, at a distance from
the center of the cluster greater or equal to

√
(N − 1)/πρl.

The state is then given by the an, solutions of the set of
equations

bp = 0 =
N∑
n=1

ane−
1
2 znz̄n zpn p = 0, . . .N − 2 , (16)

whose solution, up to a proportionality constant is

ane−
1
2 znz̄n = CN,n , (17)

where CN,n is the cofactor of the element (N,n) in the
Vandermonde type matrix:

Dp
N =


1 . . . . . . 1
z1 . . . . . . zN
... . . . . . .

...
zN−2

1 . . . . . . zN−2
N

zp1 . . . . . . zpN

 . (18)

In particular, for p = 0 . . .N − 2,

det Dp
N = 0 =

N∑
n=1

CN,nz
p
n (19)

which is precisely what we want. Moreover the CN,n are
given by the expression

CN,n = (−1)
N(N−1)

2 +n
∏

p<q p,q 6=n
(zp − zq) . (20)

The matrix HN = λP0(ri, rj), written in ψ1, . . . ψN basis,
is self-adjoint and positive, so its smallest eigenvalue E0

verify the inequality:

E0 ≤
(ψ|HN ψ)

(ψ|ψ)
, (21)

with the norm defined by,

(ψ|ψ) =
N∑
n=1

ānan . (22)

From this choice and for the considered state the inequal-
ity rewrites

E0 ≤ E =
λ

π

∑
n,m C̄N,nCN,mezmz̄n∑

n |CN,n|2e|zn|2
, (23)

and

E ≤ λ

π

∑
n,m C̄N,n CN,mezmz̄n∑

n |CN,n|2
· (24)

Expanding the exponential in the previous expression,
we note that the first non-vanishing term corresponds to
(zmz̄n)N−1/(N − 1)!, because the determinant of Dp

N is
zero for p < N − 1. In addition, since |zn|2 ≤ Nl ≤ N , the
set of terms has a rapid decay, which allows to neglect the
remainder of the expansion. We then obtain

E0 ≤
λ

π

1
(N − 1)!

|DN−1|2∑N
n=1 |CN,n|2

, (25)

with DN−1 = (−1)N(N−1)/2
∏
p<q(zp − zq), the Van-

dermonde determinant of the zn variables. If n∗ labels
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the impurity for which,
∏
p6=n |zn− zp|2 is minimum, then

we have the inequality

N∑
n=1

|CN,n|2 ≥ N |CN,n∗ |2 . (26)

This leads to the desired approximate form for E0

E0 ∝
λ

π

1
N !

min
p

∏
n6=p
|zp − zn|2 , (27)

which coincides with expression (15) in the two impurities
case.

3 Cluster thermodynamic

We now shall make use of the expression (27) to under-
stand the low energy behavior of the spectrum obtained
by Brézin, Gross, Itzykson (f < 1). We start from the
principle that each impurity in the system gives rise to an
excited state whose energy depends on the configuration
of the other impurities. If the concentration around one
impurity is high, i.e if the impurity is in a cluster, the
corresponding energy is low and not affected by the impu-
rities situated outside of the cluster (too far away for any
overlap effect). We therefore associate a low-energy state
to the presence of a cluster around an impurity, and by
extension, introduce a density of states per impurity. Let
Xi be a variable parameterizing the cluster configuration
of the impurity i. Its contribution to the density of state
per impurity is proportional to the probability P (Xi) of
being realized

ρi(E) =
∫

DXi P (Xi) δ(E(Xi)−E) . (28)

So in average, the low-energy density of states by unit vol-
ume is proportional to ρ times the preceding expression. If
we use now the expression (27) to evaluate the energy of
the clusters, we note that to a given energy corresponds a
statistical ensemble of clusters. Each cluster is defined by
its volume Nl, its mean density ν = N/Nl > 1 > f , and
by the positions zi, i = 1 . . .N , of the impurities in the
cluster. At very low energy, the clusters are expected to
be macroscopic objects, and may be described by a finite
number of macroscopic variables giving the density pro-
file, in place of the microscopic degrees of freedom (namely
the individual positions of impurities). For this purpose,
we first determine the distribution of positions in a clus-
ter of energy E, size Nl and mean density ν. For a given
configuration the energy is

E = exp

[
N∑
n=1

log |zn|2 −N logN +N

]
, (29)

using the Stirling formula (N ! ' NN e−N ) and with
0 ≤ |zn|2 ≤ Nl (Nl = πρlR

2). We consider a subdivi-
sion of the cluster in M cells, corresponding to intervals

of the |zn|2 equal to a = Nl/M (cells with identical area
πR2/M = a/ρl = πδr2 = δ|z|2/ρl). If np is the number of
impurities in the cell p, then the probability associated to
this configuration (n1, . . . , nM ) of the cluster is

P (n1, . . . , nM , N) =
N !

n1! . . . nM !

(
1
M

)N (fNl)N

N !
e−fNl .

(30)

Since macroscopic objects are best described with the con-
tinuum limit, we define (x = |z|2/Nl = p

Nl
a)

ν(x)dx = np = ν(x)
1
M

1�M � N . (31)

The energy takes then the form

logE = Nl

∫ 1

0

[ν(x) log x+ ν − ν log ν] dx , (32)

and, at leading contribution in Nl, the probability is

logP = Nl

∫ 1

0

[
ν(x)

(
1− log

ν(x)
f

)
− f

]
dx , (33)

with the constraint ∫ 1

0

ν(x)dx = ν . (34)

We now need to determine the configuration for which
logP is maximum at fixed E, Nl and ν. Using a Lagrange
multiplier for the energy constraint we obtain the saddle
point equation

∂ logP
∂ν(x)

− α∂ logE
∂ν(x)

= 0 . (35)

The solution, with proper normalization, is

ν(x) = ν(1− α)
(
x

Nl

)−α
, (36)

α being implicitly determined through the relation be-
tween γ = 1/(1− α) and the energy,

logE = −Nl(ν(log ν − 1) + γν) . (37)

The probability becomes such that

logP = logE −Nl(f − ν(1 + log γf)) . (38)

At a given energy, the possible configurations are param-
eterized by (Nl, ν). The saddle point is determined by the
set of equations (∂ logP

∂Nl

)
ν,E

= 0 , (39)

(∂ logP
∂ν

)
Nl,E

= 0 . (40)
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Using (37), which determines γ these equations rewrites

log γf +
1− log ν

γ
− f

ν
= 0 , (41)

log γf − 1
γ

log ν = 0 . (42)

So finally, logP has its maximum (which can be verified by
computing second derivatives) at energy E when ν = 1,
Nl = −f logE/(1 − f), which corresponds to γ = 1/f .
The other solution (ν = f and γ = 1) is also a local maxi-
mum, but outside the range of interest for the parameters.
Hence, for this type of configurations (parameterized now
only by X = Nl), we have the relation

log
P

E
= −f logE . (43)

And, using (28) (with the change of variable DX ∝
dE/E), we arrive at the expected low-energy behavior of
the density of states

ρ(E) ∝ E−f . (44)

Moreover, states contributing to this behavior are asso-
ciated to the existence of impurity clusters of size Nl =
−f logE/(1− f) and the shape

ν(x) = f xf−1 . (45)

In contrary to the Lifshitz argument, the low energy
states are associated with regions of high impurity concen-
tration around which they localize. Their characteristic
size is log 1/E, a rough indication of a logarithmic diver-
gence of the localization length, at least when f � 1. This
feature (absence of critical exponent) might be very par-
ticular to the zero-range nature of the impurity scattering
potential, and is consistent with numerical analysis found
in reference [16]. When f approaches 1, this picture might
be modified by some “percolation” effect of the clusters.
For f greater than 1 the argument developed in this paper

is not applicable to reproduce the low energy spectrum,
but neither is the standard Lifshitz argument. This seems
to indicate that states are not localized at the bottom of
the spectrum in this case.
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